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Abstract

An ideal naturally ventilated building model that allows a theoretical study of the effect of thermal mass associating

with the non-linear coupling between the airflow rate and the indoor air temperature is proposed. When the ventilation

rate is constant, both the phase shift and fluctuation of the indoor temperature are determined by the time constant of

the system and the dimensionless convective heat transfer number. When the ventilation rate is a function of indoor and

outdoor air temperature difference, the thermal mass number and the convective heat transfer air change parameter are

suggested. The new thermal mass number measures the capacity of heat storage, rather than the amount of thermal

mass. The analyses and numerical results show that the non-linearity of the system does neither change the periodic

behaviour of the system, nor the behaviour of phase shift of the indoor air temperature when a periodic outdoor air

temperature profile is considered. The maximum indoor air temperature phase shift induced by the direct outdoor air

supply without control is 6 h.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thermal mass or its thermal storage effect can be

used to reduce energy consumption of mechanical

cooling and heating systems in buildings. When a

building is naturally ventilated, thermal mass can be

used to regulate indoor air temperatures. Passive design

with the use of thermal storage can become very effective

when there is a significant diurnal variation of ambient

temperature and/or diurnal variation in solar radiation

intensity. The working principle is very simple that

thermal mass stores heat in both the building envelope

materials and the interior mass such as partitions, ceiling

and floor during a warm period on a summer day and

releases it at a later time in the day. The peak cooling

loads can be reduced thereby similarly, the stored heat

during high solar gains can be released into the building

in the late afternoon, which can satisfy partly the heating

needs during cold period. Two engineering questions are

to be interested as how much thermal mass should be

used in a particular design and what are the quantitative

impacts of thermal mass on cooling/heating loads and

indoor air temperature. The main focus of this paper is

to study the non-linear coupling between ventilation and

internal thermal mass in naturally ventilated buildings.

Internal thermal mass such as furniture and purposed-

built internal concrete partitions does not expose to

ambient temperature directly, while the external thermal

mass such as walls and roofs expose directly to ambient

temperature variation.

Balaras [1] reviewed a large number of the previous

studies on thermal mass effects in buildings. Different

simplified models for taking into account the building�s
thermal mass into cooling load analyses were reviewed,

and different parameters were found for describing the
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thermal mass effects [2–4]. Mathews et al. [3] provided a

procedure for estimating the effective heat storage ca-

pacity in a building. More detailed treatment of thermal

mass effect was also done through analytical and nu-

merical solutions of transient heat transfer through ex-

ternal thermal mass such as walls. Classical texts in

analytical heat conduction such as Carslaw and Jaeger

[5] have found their use in buildings through the well-

known work such as Danter [6].

Thermal mass is effective for dampening the wide

range temperature fluctuation from the outdoor and

maintaining the indoor air temperature within a com-

fortable range [7–9]. The heat storage in thermal mass

works together with other heat transfer processes in

buildings. Heat is also gained or lost in a building

through heat conduction through the building envelope,

thermal radiation through windows, ventilation through

openings and/or infiltration/exfiltration through leak-

ages. The so-called night ventilation technique [10,11] is

based on the principle of ventilating the building at night

to cool down its walls, floor and ceiling as the thermal

mass, and absorbing the heat during the following

daytime. Night ventilation can be either natural or me-

chanical. When it is mechanical, the analyses are much

simpler than when it is naturally ventilated. Kammerud

et al. [12] presented a study of the effect of ventilation

cooling for a group of residential buildings. Their ana-

lyses assumed a fan-forced ventilation rather than nat-

ural ventilation.

There are at least two associated difficult issues when

dealing with natural ventilation. Firstly, the ventilation

flow rate is not a constant, as the ventilation opening

such as window opening is affected by human behavior.

Secondly, the natural ventilation flow rates also depend

on changing wind and thermal forces. For stack-driven

natural ventilation, the ventilation flow rate depends on

the temperature difference between indoor and outdoor

air, while at the meantime the indoor air temperature is

also a function of the ventilation flow rate. Ventilation

flow rate and indoor air temperature are coupled in a

nonlinear manner. Almost all existing studies have

treated the problem as a linear system. Based on a linear

approach, Mathews [13] developed a simplified electric

analogue method, and it is obvious that the indoor air

temperature changes periodically if the outdoor air

temperature varies periodically. However, this is not

straightforward when the governing equation is non-

linear. The questions include whether the indoor air

temperature also varies periodically, and if it changes

periodically, then, what is the phase difference between

the indoor and outdoor air temperatures and what are

the engineering parameters affecting the phase shift.

Van der Maas and Roulet [10] developed a simple

dynamic model that couples airflow, heat transfer and a

Nomenclature

Ab area of the bottom opening �b�, m2

AM effective heat transfer area of the thermal

mass, m2

At area of the top opening �t�, m2

A� effective opening area of a building, m2

B buoyancy flux, m4/s3

Cd discharge coefficient

CM heat capacity of the thermal mass, J/kg �C
Cp heat capacity of air, J/kg �C
E effective total heat power, W

g acceleration of gravity, m/s2

h height between two vertical openings �t� and

�b�, m

hM convective heat transfer coefficient at sur-

face of thermal mass materials, W/m2 �C
M mass of thermal mass, kg

q ventilation flow rate, m3/s

t time, h

TE air temperature rise due to steady state heat

source, K

Ti indoor air temperature, K

TM thermal mass temperature, K

To outdoor air temperature, KeTTo mean outdoor air temperature, K

DeTTo amplitude of fluctuation of outdoor air

temperature, K

Greek symbols

a buoyancy air change parameter, m3/s

b phase shift

u thermal mass number

k convective heat transfer number

h outdoor temperature fluctuation air change

parameter, m3/s

hE heat source induced air temperature pa-

rameter, K

hH convective heat transfer air change param-

eter, m3/s

q air density, kg/m3

s time constant, h

x frequency of outdoor temperature variation,

h�1

Subscripts

b bottom opening

i indoor

M thermal mass

o outdoor

t top opening
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thermal model for the wall, numerical method was used

to solve the coupled equations. With some modifications,

the present analyses are also applicable to situations when

phase change materials are used for thermal storage.

2. A simple building model with constant ventilation flow

rate

We first consider an ideal building model with a

constant ventilation flow rate (see Fig. 1). The building

is ventilated mechanically. The air temperature distri-

bution in the building is uniform, implying that the

airflow is fully mixed. The building envelope is perfectly

insulated and due to the uniformity of indoor air tem-

perature, the thermal radiation between the room sur-

faces do not exist. All heat gain and heat generation in

the building can be lumped into one heat source term, E.

The temperature distribution in the thermal mass

materials is also assumed to be uniform. This means that

the thermal diffusion process is much faster than the

convective heat transfer at thermal mass surface. Two

situations are considered here as shown in Fig. 1.

1. The thermal mass materials are in equilibrium with

the indoor air. This means that the thermal mass tem-

perature is always the same as the indoor air temper-

ature (Fig. 1a). This assumption allows a simple

governing equation to be derived.

2. The thermal mass materials are not in equilibrium

with the indoor air (Fig. 1b). Then, the convective

heat transfer process between the thermal mass and

indoor air should be considered.

2.1. The thermal mass is in equilibrium with the room air

The heat balance equation for the building becomes

xMCM

oTi

oðxtÞ þ qCpqðTi � ToÞ ¼ E ð1Þ

The ventilation flow rate q is always positive. In this

paper, we do not study the effect of heat transfer

through the building envelope, and hence, the effect

of solar radiation is not an issue here. We assume that

the outdoor temperature can be expressed by Fourier

analysis as the sum of sinusoidal components of periods

24, 12, 8, 6, etc., hours. Similar to other studies, we

only consider the main sinusoidal component of period

24 h.

To ¼ eTTo þ DeTTo sinðxtÞ ð2Þ

where DeTTo and eTTo are independent of time and DeTTo P 0;

x is the frequency of the outdoor temperature fluctua-

tion with a value of 2p=24 h�1.

Substituting Eq. (2) into (1) and after some re-

arrangements, we have

xs
oTi

oðxtÞ þ Ti ¼ TE þ eTTo þ DeTTo sinðxtÞ ð3Þ

where s ¼ MCM=qCpq and TE ¼ E=qCpq. The system as

described by Eq. (3) is similar to the classical lumped

parameter model of a solid body with convective heat

transfer at its surface [14]. The general solution of the

differential equation (3) can be written as

TiðxtÞ ¼ eTTo þ TE þ
DeTTo

1 þ x2s2
sin xt � xsDeTTo

1 þ x2s2

� cos xt þ Ce�ð1=sÞt ð4Þ

where C is a constant, determined by the initial condi-

tions. s is the time constant of the system. The solution is

the sum of two parts. The first part is a periodic solution

with a period of 2p. The second part contains the initial

condition, which decays to zero as time increases. In

terms of dynamical systems, the solution (4) is said to be

a global attractor. The solution (4) oscillates non-peri-

odically, as C 6¼ 0, approaching to the following periodic

solution.

Fig. 1. A simple two-opening one-zone building model with periodic outdoor air temperature variation. The shaded area represents

the thermal mass. (a) The thermal mass is in equilibrium with the room air. (b) The thermal mass is not in equilibrium with the room

air.
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TP ðxtÞ ¼ eTTo þ TE þ
DeTToffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ x2s2
p sinðxt � bÞ ð5Þ

where the phase shift b ¼ tan�1ðxsÞ, with sinb ¼
xs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2s2

p
and cos b ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2s2

p
.

After sufficient long time, the indoor air temperature

becomes periodic, which has three components: the first

is the mean outdoor air temperature, the second is the

steady state air temperature rise due to the steady heat

source, the third is the fluctuating component. If the

outdoor air temperature fluctuation is zero, then the

third part is zero. The magnitude of the indoor air

temperature fluctuation is always smaller than that of

the outdoor air temperature fluctuation with a coeffi-

cient of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2s2

p
. The amplitude reduction is a

function of both the frequency of outdoor temperature

fluctuation DeTTo and the time constant s of the system

(see Fig. 3). For the 24-h frequency alone considered

here, it can be found when the time constant s of the

system is large, the fluctuation of indoor air temperature

becomes small. We sketch a typical indoor air temper-

ature profile in Fig. 2.

The phase shift b of the indoor air temperature is also

a function of both the frequency of outdoor temperature

fluctuation and the time constant. It has a value between

0 and p=2 (i.e. 0 and 6 h, see Fig. 4). When the time

constant s approaches zero, the indoor air temperature

follows right along in phase with the outdoor tempera-

ture. As time constant approaches infinity, the indoor

air temperature is out of phase by p=2 (6 h). The phase

shift b can be expressed as

b ¼ 24

2p
tan�1 xMCM

qCpq

� �
¼ 12

p
tan�1 xMCM

qCpq

� �
ðhoursÞ

ð6Þ

It can be seen that to achieve the same phase shift, the

amount of thermal mass should be proportional to the

amount of ventilation flow rate. A higher ventilation

rate in a building requires a larger amount of thermal

mass.

2.2. The thermal mass is not in equilibrium with the room

air (Fig. 1b)

A more realistic situation is the thermal mass mate-

rials being not in equilibrium with the indoor air. We

assume that the thermal mass has a uniform temperature

distribution.

There are two basic heat balance equations, one for

the room air and one for the thermal mass.

qCpqðTo � TiÞ þ hMAMðTM � TiÞ þ E ¼ 0 ð7Þ

Fig. 3. The non-dimensional indoor air temperature fluctuation

DeTTi (normalized by the outdoor air temperature fluctuation

DeTTo) as a function of the time constant.

Fig. 2. A sketch of the periodic indoor and outdoor air tem-

perature profiles in a simple building when the ventilation flow

rate is constant.

Fig. 4. The phase shift of the indoor air temperature as a

function of the time constant.
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MCM

oTM

ot
þ hMAMðTM � TiÞ ¼ 0 ð8Þ

From Eq. (7), we obtain

TM ¼ 1

�
þ qCpq
hMAM

�
Ti �

qCpq
hMAM

To �
E

hMAM

ð9Þ

Substituting Eq. (9) into (8), after some manipulation,

we obtain

xs
oTi

oðxtÞ þ
k

1 þ k
Ti ¼

k
1 þ k

eTTo

�
þ TE

�
þ k

1 þ k
DeTTo

� sinðxtÞ
h

þ xs
k

� �
cosðxtÞ

i
ð10Þ

where k ¼ hMAM=qCpq, s ¼ MCM=qCpq and TE ¼
E=qCpq. A new convective heat transfer number k is

introduced to measure relative strength of convective

heat transfer at the thermal mass surface. If k becomes

infinity, i.e. the convective heat transfer is infinitely ef-

fective, Eq. (10) can be shown to be identical to Eq. (3),

which is the governing equation for the situation when

the thermal mass is in equilibrium with the indoor air.

The general solution for Eq. (10) is

TiðxtÞ ¼ eTTo þ TE þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ x2s2

k2 þ x2s2ð1 þ kÞ2

s
DeTTo

� sinðxt � bÞ þ Ce�ðk=xsð1þkÞÞxt ð11Þ

where C is an integrating constant and b ¼
tan�1½k2xs=ðk2 þ x2s2ð1 þ kÞÞ�. As the convective heat

transfer number k becomes infinity, b ¼ tan�1ðxsÞ,
which agrees with the analysis in Section 2.1.

After sufficient long time, the solution approaches to

a periodic one as

TiðxtÞ ¼ eTTo þ TE þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ x2s2

k2 þ x2s2ð1 þ kÞ2

s
DeTTo sinðxt � bÞ

ð12Þ

The first term is the mean outdoor temperature and the

second term is the steady-state air temperature rise due

to steady heat source. The mean indoor air temperature

(eTTo þ TE) is not a function of the convective heat transfer

number and the time constant of the system. The third

term is the periodic fluctuating component with its am-

plitude depending on the outdoor temperature fluctua-

tion DeTTo, the time constant s and the convective heat

transfer number k. b is again the phase lag of the indoor

air temperature with respect to the outdoor temperature.

Analytical solution (12) is plotted in Figs. 5 and 6 for

the phase shift and the fluctuation amplitude of the in-

door air temperature respectively. The solution behav-

iors at extreme conditions can be easily explained as

follows. If k ! 1, both the phase shift and the fluctu-

ating component of indoor air temperature are identical

to those obtained in Section 2.1. This is due to that the

heat transfer resistance between the thermal mass and

the indoor air becomes negligible. Thus the thermal

mass temperature is in equilibrium with the indoor air

temperature. As the thermal mass increases, both the

time constant and the convective heat transfer number

increase. It can be shown from the analytical solution

(12) that as both the time constant and convective heat

transfer number approach to infinity, the indoor air

temperature fluctuation approaches to zero.

If the convective heat transfer at the thermal mass

surface is absent, then k ¼ 0, the phase shift of the in-

door air temperature is zero and its fluctuation is exactly

the same as that of the outdoor air temperature, no

matter how large is the thermal mass value. This is

Fig. 5. The phase shift of the indoor air temperature as a

function of the time constant and the convective heat transfer

number.

Fig. 6. The non-dimensional indoor air temperature fluctuation

DeTTi (normalized by the outdoor air temperature fluctuation

DeTTo) as a function of the time constant and the convective heat

transfer number.
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simply because there is no longer any thermal interac-

tion between the thermal mass and the indoor air.

It is not difficult to understand, that when k is small

(between 0.1 to 10, which are typical practical values),

the phase shifts are much smaller than those with very

large convective heat transfer numbers. However, it is

not obvious that for a fixed value of k, the phase shift

first increases exponentially as the time constant in-

creases, then drops as the time constant further in-

creases, approaching zero as the time constant

approaches infinity. It can be seen from Fig. 6 that, for k
ranging from 0.1 to 1, the fluctuation amplitude of the

indoor air temperature, normalized by the outdoor

fluctuation amplitude, becomes constant as the time

constant becomes very large. This suggests that the

convective heat transfer between the mass and nearby

air is an important aspect in thermal mass design, which

is well known by engineers.

3. A simple building model with stack-driven ventilation

For the simple building model shown in Fig. 1, the

basic assumptions are the same as in Section 2, except

that the stack-driven ventilation flow rate is not a con-

stant. Two openings at different vertical levels on op-

posite walls, are relatively small, and the areas of the top

and bottom opening are At and Ab respectively. With

stack driven ventilation, it is known that indoor airflow

is thermally stratified in some circumstances. However,

the fully mixed assumption is used here because it leads

to relatively simple equations, which nonetheless display

interesting behaviour and because this assumption is

used in the simpler treatments of natural ventilation of

multi-zone buildings.

Let the ventilation flow rate, q, to be positive for

upward ventilation flows and negative for downward

flows. Noting that the indoor temperature can be either

higher or lower than the outdoor temperature. Accord-

ing to Li and Delsante [15],

q ¼ CdA�sgnðTi � ToÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gh

Ti � ToeTTo





 




s

ð13Þ

where Cd is the opening discharge coefficient assumed to

be the same for both openings, A� ¼ AtAb=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

t þ A2
b

p
is

the effective area, and h is the vertical distance between

the top and bottom openings. The positive sign is used in

Eq. (13) if indoor air temperature is higher than outdoor

temperature, while the negative sign is used if the indoor

air is cooler. The volumetric expansion coefficient is

assumed to be constant. This ventilation flow rate

equation can be rewritten as

qjqj ¼ ðCdA�Þ22gh ðTi � ToÞeTTo

ð14Þ

Again, two situations are also considered below.

3.1. The thermal mass is in equilibrium with the room air

The heat balance for the single-zone building gives

xMCM

oTi

oðxtÞ þ qCpjqjðTi � ToÞ ¼ E ð15Þ

Note that the ventilation flow rate can be either negative

or positive.

Combining Eqs. (14) and (15), after some re-

arrangement, we obtain the following governing equa-

tion for the ventilation flow rate,

2uhjqj oq
oðxtÞ ¼ �q3 þ 2a3½1 � u cosðxtÞ� ð16Þ

where

a ¼ ðCdA�Þ2=3ðBhÞ1=3 ð17Þ

B ¼ Eg

qCp
eTTo

ð18Þ

h ¼ E

qCp DeTTo

ð19Þ

u ¼ MCMxDeTTo

E
ð20Þ

The parameter a is referred as the buoyancy air change

parameter in the literature and it characterizes the effect

of the thermal buoyancy force [15]. B is the buoyancy

flux. a is found to be useful for analyzing buoyancy-

driven natural ventilation. Two new parameters u and h
are emerged to characterize the effect of thermal mass

and the outdoor temperature fluctuation. The thermal

mass number u is dimensionless, and is the ratio be-

tween the maximum heat stored MCMxDeTTo by thermal

mass and the total heat gain in the building. h is the

outdoor temperature fluctuation air change parameter,

with the same dimension as the airflow rate. As the

ventilation flow rate is not known, we cannot define a

time constant as in the linear problem.

Similarly, we can obtain the governing equation for

indoor air temperature Ti. From Eqs. (14) and (15)

uffiffiffi
23

p h
a

� �
oY

oðxtÞ þ Y jY j1=2 ¼ 1 � u cosðxtÞ ð21Þ

where Y ¼ ðTi � ToÞ=hE and hE is the heat source induced

air temperature parameter, which has a unit of temper-

ature (K) and is defined as follows,

hE ¼ E2eTTo

2ghðCdA�Þ2q2C2
p

" #1=3

ð22Þ

There are no known general solutions to the non-linear

equations (16) and (21). Here we try to illustrate what
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happens to the indoor air temperature when there is a

non-linear interaction between the ventilation flow rate

and thermal mass.

We examine first the situation for u approaching

infinity. Eq. (16) becomes

2hjqj oq
oðxtÞ ¼ �2a3 cosðxtÞ ð23Þ

The general solution of the differential equation (23) is

qjqj ¼ � 2a3

h
sinðxtÞ þ C ð24Þ

where C is a constant. The phase difference between the

ventilation flow rate q and the outdoor air temperature

To is thus 24
2p ð3p

2
� p

2
Þ ¼ 12 h. We are more interested in the

maximum phase shift for the indoor air temperature.

The solution for the indoor air temperature can be easily

obtained by either using Eqs. (14) and (24) or by solving

Eq. (21) directly, we have

TiðxtÞ ¼ 1

"
þ C

2ghðCdA�Þ2

#eTTo ð25Þ

where C is a constant. This shows that as the amount of

thermal mass approaches infinity, the indoor air tem-

perature does not vary in time. The largest phase shift

occurs when the thermal mass number u is the largest,

i.e. approaching infinity. The question is what is the

phase shift for indoor air temperature as thermal mass

approaches infinity. Obviously, the analytical solution

(25) cannot give the answer, and more mathematical

analyses as summarized in Appendix A are needed. It

was obtained that the solution for the nonlinear gov-

erning equation (16) is a periodic oscillating solution

with a 24-h period after sufficient time and the phase

difference between the periodic oscillating solution of the

airflow rate and the outdoor air temperature To are

within 6–12 h. Similar analysis can be done for the

governing equation of the indoor air temperature, Eq.

(25), and the result is also periodic with a period of 24 h

and the phase shift is between 0 and 6 h. Unfortunately,

we cannot prove mathematically at the present that the

periodic solution is unique, although all numerical

solutions obtained so far are unique.

The governing equations (16) and (21) are solved by

the fourth-order Runge–Kutta method. The ventilation

flow and the steady-state periodic temperature profiles

for a naturally ventilated building model with a very

large thermal mass number are shown in Fig. 7, from

which there are time lags for both the indoor air tem-

perature (solid line) and ventilation flow (dash-dotted

line) with respect to the outdoor temperature (dotted

line). Also the fluctuation amplitude of the indoor air

temperature is much smaller than that of the outdoor

temperature.

Fig. 8 shows the variation of the phase shifts for both

the flow rate and the indoor temperature compared to

the outdoor air temperature. Fig. 8 was plotted using

both the airflow rate equation (16) and the indoor air

temperature equation (21), and the results were identi-

cal. The numerical results agree well with the mathe-

matical analyses in Appendix A. The phase shift of the

airflow rate is bounded by 6 and 12 h and the phase shift

for the indoor air temperature ranges from 0 to 6 h. For

both phase shifts, the rates of increase are initially very

high and then gradually decrease until the phase shifts

become constants. This indicates that the use of thermal

mass should be optimized, as excessive thermal mass is

Fig. 7. A sketch of the ventilation flow and temperature profiles of a naturally ventilated building model with thermal mass effect.
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not beneficial when the phase shift approaches to its

maximum value. As shown in Fig. 8, the higher the value

of h=a, the greater is the phase shift for the same thermal

mass number.

For the indoor temperature, the phase shift ap-

proaches to zero as u approaches to zero (Fig. 8). This is

obvious, but can also be shown by the analysis of the

governing equation. Substituting u ¼ 0 into Eq. (16)

gives

q ¼
ffiffiffi
2

3
p

a ¼ qss

where qss ¼
ffiffiffi
23

p
a is the steady-state flow rate for a single-

zone building under stack-driven ventilation alone [15]

and without thermal mass effect. The indoor air tem-

perature, Ti, is obtained as

Ti ¼ eTTo

�
þ E

qCpqss

�
þ DeTTo sinðxtÞ ð26Þ

Ti is a sinusoidal function in phase with the outdoor

temperature To.

Figs. 9 and 10 show respectively the variations of the

predicted mean values and the fluctuation (amplitude) of

the ventilation flow rate, normalized by the thermal air

change parameter, a. When the effect of thermal mass is

absent (i.e. u ¼ 0), the ventilation flow rate equals
ffiffiffi
23

p
a

and no fluctuation exists. Examining the curve for

h=a ¼ 5 in Fig. 9, it can be seen that as u increases, i.e.

the amount of relative heat storage increases, the mean

ventilation flow rate first decreases exponentially and

then approaches to a constant as the thermal mass

number is greater than 2. This is due to the fact that the

heat is stored in the thermal mass and the mean tem-

perature difference between the indoor and outdoor is

reduced. In the meantime, examining the thick solid

curve (h=a ¼ 5) in Fig. 10, the fluctuation first increases

exponentially as a result of increasing thermal mass, and

then approaches to a constant.

Eq. (6) shows that for constant ventilation flow rate,

the indoor air temperature fluctuation is a linear func-

tion of the outdoor air temperature fluctuation. It seems

that, even when the ventilation flow rate is not constant,

the indoor air temperature fluctuation also increases as

the outdoor air temperature fluctuation increases (see

Fig. 11). This is also reflected in the trend of ventilation

flow rate fluctuation when the outdoor air temperature

fluctuation decreases (Fig. 10). A decreasing outdoor air

temperature fluctuation means an increasing outdoor air

temperature fluctuation parameter h. It is obvious that

as the outdoor air temperature fluctuation reduces to

zero, the fluctuation of the outdoor airflow rate also

becomes zero.

Fig. 11 shows the changes of the ratio of indoor

temperature fluctuation to the outdoor temperature

fluctuation with respect to thermal mass number u. As

shown, the ratios decrease from 1 to 0 as u increases

from zero to infinity. This agrees well with the physical

features of the system, the indoor air temperature profile

follows in phase with the outdoor air temperature vari-

ation as the effect of thermal mass is absent, and the

outdoor air temperature fluctuation will be dampened

completely (as the effect of thermal mass is very large

(approaching infinity)).

Fig. 8. Phase shifts for both the ventilation flow rate (solid lines) and the indoor air temperature (dotted lines) for the stack-ventilated

model with TM ¼ Ti. Note two vertical axis are used.
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3.2. The thermal mass is not in equilibrium with the room

air

Again, there are two basic heat balance equations,

one for the room air and another for the thermal mass,

as

qCpjqjðTo � TiÞ þ hMAMðTM � TiÞ þ E ¼ 0 ð27Þ

MCM

oTM

ot
þ hMAMðTM � TiÞ ¼ 0 ð8Þ

Eq. (27) differs only from Eq. (7) that the flow rate, q,
can be either positive or negative.

Using Eq. (27) and the flow rate equation (14), we

obtain

TM ¼ E
hMAM

Ti � To

hE

� �
Ti � To

hE





 



1=2
"

� 1

#
þ Ti ð28Þ

Substituting Eq. (28) into (8), after simplification, we

have

Fig. 10. Normalized ventilation rate fluctuation as a function of the thermal mass number for the stack-ventilated model with TM ¼ Ti.

Fig. 9. Normalized mean ventilation rate as a function of the thermal mass number for the stack-ventilated model with TM ¼ Ti.
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uffiffiffi
23

p h
a

oY
oðxtÞ þ

3

2
u

h
hH

jY j1=2 oY
oðxtÞ þ Y jY j1=2 ¼ 1 � u cosðxtÞ

ð29Þ

where Y ¼ ðTi � ToÞ=hE and hH ¼ hMAM=qCp, which is

the convective heat transfer air change parameter. As hH

goes to zero, there is no thermal link between the ther-

mal mass and the air temperature. The indoor air tem-

perature is then in phase with the outdoor temperature.

Eq. (29) can be rearranged as

u
h
a

� �
1ffiffiffi
23

p hH

a

� ��
þ 3

2
jY j1=2

�
oY

oðxtÞ þ
hH

a

� �
Y jY j1=2

¼ hH

a

� �
½1 � u cosðxtÞ� ð30Þ

We can also obtain from Eq. (14),

Ti ¼ To þ
qjqj

2ghðCdA�Þ2
eTTo ð31Þ

Substitute Eq. (31) into (27), we obtain

TM ¼ 1

hH

E
qCp

q3

2a3

�
þ hH

qjqj
2a3

� 1

�
þ To ð32Þ

Substituting Eqs. (31) and (32) into Eq. (8), after rear-

rangement, we have

u
h
a

� �
3

2

q
a

� �2
�

þ hH

a

� �
q
a




 


� o q=að Þ
oðxtÞ þ 1

2

hH

a

� �
q
a

� �3

¼ hH

a

� �
½1 � u cosðxtÞ� ð33Þ

The governing equation for the thermal mass tempera-

ture TM is not explicitly given here as it is not of our

primary interest and additional complexity arises due to

the appearance of higher order terms if q and Ti are

expressed in terms of TM.

As the amount of thermal mass approaches infinity,

both the thermal mass number, u, and the convective

heat transfer air change parameter, hH , approach infin-

ity. Hence, Eq. (29) becomes

hffiffiffi
23

p
a

oY
oðxtÞ ¼ � cosðxtÞ ð34Þ

the solution will be

Y ¼ C1 �
ffiffiffi
23

p
a

h
sinðxtÞ ð35Þ

where C1 is a constant. As Y ¼ Ti�To

hE
, we obtain

Ti ¼ To þ C1hE �
ffiffiffi
23

p
a

h
hE sinðxtÞ or Ti ¼ eTTo þ C1hE

ð36Þ

Thus the indoor air temperature becomes a constant as

the thermal mass value approaches infinity.

At the same time, as the thermal mass approaches

infinity, the airflow rate becomes

h
a

� �
q
a




 


 o q=að Þ
oðxtÞ ¼ � cosðxtÞ

We can obtain qjqj ¼ C2 � ð2a3=hÞ sinðxtÞ, the time lag

for the flow rate is 12 h.

Fig. 11. The ratio of indoor air temperature fluctuation to outdoor temperature fluctuation as a function of the thermal mass number

for the stack-ventilated model with TM ¼ Ti.
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A number of different parameters are emerged to

describe the effect of thermal mass in buildings with

ventilation. When the ventilation rate is constant, both

the phase shift and fluctuation of the indoor temperature

are determined by the time constant of the system

s ¼ MCM=qCpq and the dimensionless convective heat

transfer number, k ¼ hMAM=qCpq. k is analog to the

Biot number. Recall that a small value of the Biot

number means the external resistance (convective heat

transfer) being large compared to the internal resistance

(heat conduction) and in this case the internal temper-

ature distribution can be assumed to be uniform. Simi-

larly, a large value of the convective heat transfer

number means that the convective heat transfer is very

effective compared to the flow mixing in the room, and

the thermal mass temperature can thus be considered as

in equilibrium with the room air temperature.

When the ventilation rate is a function of indoor and

outdoor air temperature difference, the characteristic

parameters are quite different, we suggest the use of

Fig. 12. Phase shifts for both the ventilation flow rate (solid lines) and the indoor air temperature (dotted lines) for the stack-ventilated

model with TM 6¼ Ti.

Fig. 13. Normalized mean ventilation rate as a function of the thermal mass number for the stack-ventilated model with TM 6¼ Ti.
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thermal mass number, u and convective heat transfer air

change parameter, hH . The thermal mass number mea-

sures the capacity of heat storage, rather than the

amount of thermal mass. By calculating the value of

these non-dimensional numbers or parameters, engineer

can make an estimate of whether the thermal mass de-

sign will be suitable for its application.

Fig. 12 shows the changes of phase shift for both the

airflow rate and the indoor air temperature for h=a ¼ 10,

it was observed that the results for other values of h=a
are similar. As shown in Fig. 12, when hH > 1000, the

phase shift curves approach to that for the situation

when the thermal mass is in equilibrium with the indoor

air. However, a smaller value of the normalized con-

Fig. 14. Normalized ventilation rate fluctuation as a function of the thermal mass for the stack-ventilated model with TM 6¼ Ti.

Fig. 15. The ratio of indoor air temperature fluctuation to outdoor temperature fluctuation as a function of the thermal mass number

for the stack-ventilated model with TM 6¼ Ti.

1262 J. Yam et al. / International Journal of Heat and Mass Transfer 46 (2003) 1251–1264



vective heat transfer air change parameter reduces the

phase shift significantly. The results are very similar to

those shown in Fig. 5 for the phase shift of indoor air

temperature.

Figs. 13 and 14 show the normalized mean flow rate

and flow fluctuation (amplitude) in terms of the thermal

mass number respectively. The effect of the convective

heat transfer parameter hH=a is also shown. Similar to

the results as shown in Figs. 9 and 10, the ventilation

flow rate equals
ffiffiffi
23

p
a and there is no fluctuation when

the effect of thermal mass is absent (i.e. u ¼ 0). These

results can be shown as well by examining the governing

equations (27) and (8). As the thermal mass number, u,

increases beyond the value of 1, the predicted mean flow

rate and flow fluctuation depends only on hH for con-

stant h=a ratio. However, the results for large values of

hH=a (greater than 100) are approximately the same.

In Fig. 15, the normalized indoor air temperature

fluctuation is shown as a function of u for different

values of the normalized convective heat transfer air

change parameter hH=a. When hH=a is small (less than

10), the normalized indoor air temperature fluctuation is

controlled by the convective heat transfer process at the

thermal mass surfaces. Further increase of thermal mass

has no effect at all. Again, this suggests that the im-

portance of the convective heat transfer between the

mass and the indoor air.

4. Conclusion

It is possible to design a system with a predicted time

lag for a naturally ventilated building using the simple

methods derived in this paper.

Unlike the periodic heat transfer through the build-

ing envelope which can introduce a large time lag for the

indoor air temperature, we have shown here, the maxi-

mum indoor air temperature phase shift induced by the

direct outdoor air supply without control is 6 h in an

either mechanically or naturally ventilated building. The

non-linearity of the system does not significantly change

the periodic behaviour of the system and the phase shift

of the indoor air temperature when a periodic outdoor

air temperature profile is considered. When the ventila-

tion rate is constant, both the phase shift and fluctuation

of the indoor temperature in a simple building are de-

termined by the time constant of the system and the

dimensionless convective heat transfer number. When

the ventilation rate is a function of indoor and outdoor

air temperature difference, the so-called ‘‘thermal mass

number’’ and ‘‘convective heat transfer air change pa-

rameter’’ are suggested.

Appropriate amount of thermal mass should be used

in building passive design as further increase of thermal

mass would not increase the phase shift of the system.

Convective heat transfer at the thermal mass surfaces is

very important and its quantitative impact shows that

the phase shift of the indoor air temperature can be re-

duced even the thermal mass number is increased if the

convective heat transfer number is less than 10.

It is hoped that the present study will pave the way

for further understanding of the thermal mass effect and

develop design guidelines for natural ventilation and

passive design of buildings.
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Appendix A. Mathematical analyses for the non-linear

governing equation

The non-linear governing equation for the ventilation

flow rate derived in Section 3.1 is as follows:

2uhjqj oq
oðxtÞ ¼ �q3 þ 2a3½1 � u cosðxtÞ� ðA:1Þ

where u > 0, h > 0 and a > 0. The non-linearity of the

equation arises as a result of the coupling between in-

door air temperature and ventilation flow rate. The

above equation was derived assuming that the outdoor

air temperature changes sinusoidally. The question is

whether the airflow rate and indoor air temperature also

change sinusoidally and what will be the phase shift

from the outdoor air temperature for both ventilation

flow rate and the indoor air temperature.

Unfortunately, Eq. (A.1) cannot be solved analyti-

cally and we have carried out a mathematical analysis

using some concepts from the dynamic systems theory.

The detailed mathematical proof is not given here, as it

is too lengthy. The results are summarized as follows.

Eq. (A.1) can be written as

ds
ds

¼ 2uhjqj
dq
ds

¼ �q3 þ 2a3½1 � u cos s�

8><>: ðA:2Þ

where s ¼ xt. Let (sðs; s0; q0Þ; qðs; s0; q0Þ) represents the

solution of the system (A.2) when the initial condition is

(s0; q0) at s ¼ 0. Let cðs0; q0Þ represents the whole tra-

jectory of the system (A.2) that passes through (s0; q0) at

s ¼ 0. Let cþðs0; q0Þ and c�ðs0; q0Þ represent respectively
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the positive and negative half trajectory of the system

(A.2) that pass through (s0; q0) when s ¼ 0. Let ds
ds jðs;qÞ

and dq
ds jðs;qÞ represent the values of ds=ds and dq=ds at

(s; q) respectively. Furthermore, we let

H ¼ ðs; qÞj
n

�1 < s < þ1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3ð1 � uÞ3

p
6 q6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3ð1 þ uÞ3

p o
ðA:3Þ

Our analyses are divided into three steps for three dif-

ferent situations, 0 < u < 1, u ¼ 1 and u > 1.

Step 1: To show that for any initial conditions, the

transient solution will fluctuate within a range of pa-

rameters. Mathematically, this can be written as

Theorem 1. 8ðs0; q0Þ 2 R2, 9To > 0 such that

ðsðs; s0; q0Þ; qðs; s0; q0ÞÞjsf P Tog � H ðA:4Þ

and when sP To, (sðs; s0; q0Þ; qðs; s0; q0Þ) oscillates within
H .

Step 2: To show that the transient solution is a pe-

riodic solution with a period of 24 h. Again, mathe-

matically, we can write the following statement.

Theorem 2. The solution for Eq. (A.2) is a periodic os-
cillating solution c� (q oscillates periodically with respect
to s) for the differential equations set (A.2) with a 24-h
period, c� � H , and c� is a global attractor.

Step 3: To determine the phase shift between the

periodic solution of ventilation flow rate and the out-

door air temperature.

Theorem 3. The phase difference between the periodic
oscillating solution and To satisfies 6 h < D/ < 12 h.

The above three theorems show that the solution for

the ventilation flow rate is periodic with a period of 24 h

and a phase shift between 6 and 12 h and they apply to

the situation when 0 < u < 1. Similar but more complex

conclusions can be obtained when u ¼ 1 and u > 1.

When u ¼ 1, there is also one dynamic solution

which approaches to the static solution which is not

stable, and all other dynamic solutions approach to c�.
When u ¼ 1, the phase difference between the periodic

oscillating solution c� and T0 also satisfies 6 h < D/ <
12 h.

When u > 1, equation set (A.2) at least satisfies one

of the following two results:

(1) there exists a periodic oscillating solution c� (q oscil-

lates periodically with s), with a 24-h period (with re-

spect to t), c� � H , and the phase difference between

c� and To satisfies 6 h < D/ < 12 h, or

(2) within every period there exists a trajectory, with its

negative side approaches to the static solution

ð2kp þ cos�1ð1
uÞ; 0Þ, and positive side approaches to

the static solution ð2ðk þ 1Þp þ cos�1ð1
uÞ; 0Þ. This tra-

jectory together with the static solution make up the

whole periodic oscillating curve g, with a period of

24 h (with respect to t), g � H , and the phase differ-

ence between g and To satisfies 6 h < D/ < 12 h.

Similar analyses can be done to show that the solu-

tion for the indoor air temperature is also periodic with

a period of 24 h and a phase shift between 0 and 6 h.

These analyses are useful as it is impossible to solve

analytically the non-linear governing equations for all

range of influencing parameters. It should be noted that

we failed to prove that the solution is unique for all

situations, although it seems that the numerical periodic

solution is indeed unique as shown in the main text.
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